

The 2024 Conference on Empirical Methods in Natural Language Processing November 12-16, Miami, Florida

Head-wise Shareable Attention for Large Language Models

Zouying Cao^{1,2,3}, Yifei Yang^{1,2,3}, Hai Zhao^{1,2,3,*}

¹Department of Computer Science and Engineering, Shanghai Jiao Tong University

²Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University ³Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3

 $\boldsymbol{m_{i,j}^q} = \boldsymbol{m_{i,j}^k} = \boldsymbol{m_{i,j}^v} = \mathcal{S}_{cos}(W_i^q || W_i^k, W_j^q || W_j^k)$

Introduction

- We investigate the feasibility of **head-wise** weight sharing for large language models and propose two corresponding methods named **DirectShare** and **PostShare**.
- DirectShare is time-efficient and retain a \bullet large portion of the performance when sharing ratio is below 30%.

Motivation

(3)

Complementarily, PostShare yields satisfactory performance via post-training, especially under large ratios.

Methodology

(1) Head-wise Weight Sharing Strategy

choose the cosine similarity between the concatenation matrix of W_i^q and W_i^k

(2) DirectShare:

directly share the weight matrices together between each selected attention head pairs

3 PostShare:

softly align model weights via post-training, pushing selected weight matrices more similar

Algorithm 1: DirectShare using Headwise Weight Sharing Strategy **Input:** Sharing ratio α , Original LLM \mathcal{M} , Number of layers \mathcal{L} , Number of heads per MHA block \mathcal{H} **Output:** The LLM \mathcal{M}^* after weight sharing Initialize candidate buffer \mathcal{D}_{τ} ; 2 for $layer_i \leftarrow 2$ to \mathcal{L} do for $i \leftarrow 1$ to \mathcal{H} do 3 $index_i \leftarrow (layer_i, i);$ 4 $index_m \leftarrow None;$ 5 $s_m \leftarrow -1;$ 6 for $layer_i \leftarrow 1$ to $layer_i - 1$ do 7 for $j \leftarrow 1$ to \mathcal{H} do 8 $index_m \leftarrow (layer_j, j);$ 9 Compute S_{cos} using Eq. 3; 10 if $S_{cos} > s_m$ then 11 $s_m \leftarrow \boldsymbol{S_{cos}}$ 12 Store candidate shareable head pair 13 $< index_i, index_m, s_m > in \mathcal{D}_{\tau};$

14 Sort \mathcal{D}_{τ} by descending matching scores s_m ; 15 $\mathcal{N} \leftarrow \text{Top}_N(\mathcal{D}_\tau, \mathcal{L}, \mathcal{H}, \alpha);$ 16 $\mathcal{M}^* \leftarrow \text{Weight}_\text{Share}(\mathcal{M}, \mathcal{N}).$

Experiments-Main Results

DirectShare achieves comparable performance to the competitive model pruning methods.

Benc	hmark Type	72	R	easonii	±	5 12		Knowledge							
Ratio	Method	CMNLI	OCNL	[AX-b	AX-g	RTE	RACE- middle	RACE- high	OBQA	CSL	TNEWS	Wino- Grande	BoolQ	C-Eval	MMLU
0%	Llama2-7B	32.98	33.12	53.53	55.34	49 <mark>.</mark> 82	33.15	35.51	31.80	55.62	20.22	54.04	70.67	32.20	46.69
	Magnitude	<u>32.99</u>	30.63	56.70	49.44	47.29	25.42	26. <mark>4</mark> 7	28.20	49.38	14.85	51.58	<mark>60.80</mark>	22.16	28.20
10%	LLM-Pruner	32.99	33.75	57.61	<u>50.00</u>	48.38	28.20	30.73	<u>27.20</u>	<u>53.12</u>	<u>19.76</u>	52.98	66.09	<u>22.31</u>	38.11
	DirectShare	33.00	<u>32.50</u>	54.17	51.97	50.90	28.34	<u>28.96</u>	28.20	54.37	20.86	<u>52.63</u>	67.74	28.75	43.43
	Magnitude	33.16	35.00	54.71	50.56	46.93	21.80	<u>21.53</u>	25.00	45.62	7.01	50.88	44.59	24.38	23.15
30%	LLM-Pruner	32.99	31.25	56.34	52.53	<u>48.74</u>	21.52	22.21	26.80	<u>50.00</u>	10.20	50.88	54.77	22.82	25.16
	DirectShare	33.33	<u>32.50</u>	57.07	<u>51.69</u>	49.10	21.45	<u>21.53</u>	<u>26.00</u>	51.25	20.22	<u>50.18</u>	<u>54.43</u>	26.24	26.53
0%	Llama2-13B	32.99	35.00	58.81	50.56	47.29	60.24	58.03	42.40	58. <mark>7</mark> 5	22.13	55.44	71.50	40.17	55.81

Ablation Study

(1) Statistics of Memory Reduction

Sharing Ratio	#Params	GPU Memory				
	Llama2-7B					
0%	6.74B/100%	17826M/100%				
30% MHA	6.09B/90.36%	15512M/87.02%				
30% MHA+FFN	4.74B/70.33%	12932M/72.55%				
	Llama2-13B					
0%	13.02B/100%	30800M/100%				
30% MHA	11.76B/90.32%	27898M/90.58%				
30% MHA+FFN	9.21B/70.74%	23002M/74.68%				

- When sharing 30% parameter \bullet sharing in the MHA block, our method achieves 10-13% memory.
- When we share 30% of parameter \bullet sharing in both MHA and FFN block, the model can save 26-28% GPU memory.

(2) Ablation on Head-wise Matching Functions

Sharing Ratio	5%	10%	15%	20%	25%	30%	35%	40%
Dataset	PIQA OBQA	PIQA OBQ	AOBQA	OBQA				

32.82 33.12 51.99 50.56 48.38 22.42 21.78 27.40 51.25 15.39 49.82 62.32 22.52 27.54 Magnitude 10% LLM-Pruner 32.99 36.25 58.70 50.00 46.93 51.46 50.80 47.00 56.25 20.95 55.44 68.07 30.25 51.45 DirectShare 32.99 36.25 57.61 50.00 47.29 54.04 55.63 39.40 56.88 17.94 54.39 69.45 37.17 52.81 Magnitude 33.78 33.75 46.65 50.00 51.99 21.80 22.01 28.80 46.25 4.19 49.12 56.45 23.99 22.86 **30%** LLM-Pruner 32.99 34.38 57.16 **54.21** 45.85 23.96 25.33 26.40 53.75 **16.76 51.58 63.21** 22.17 27.22 DirectShare 32.99 35.00 58.33 50.00 46.57 26.53 27.53 27.40 59.38 16.12 50.18 59.36 22.30 30.79

Table 1: Evaluation results of DirectShare based on the Llama2-7B and Llama2-13B models.

 Bold and underline indicate the best and the second best results.

(2) PostShare achieves more stable and satisfactory performance when reducing memory usage, with the cost of time increase.

Ratio	Method	WinoGrande	BoolQ	C-Eval	MMLU	RACE-middle	RACE-high	OBQA	OBQA-fact
0%	Llama2-7B	54.04	70.67	32.20	46.69	33.15	35.51	31.8	42.2
30%	DirectShare PostShare	50.18 52.98 <u>† 2.80</u>	54.43 66.57 † 12.14	26.24 26.38 † 0.14	26.53 33.36 † 6.83	21.45 29.81 † 8.36	21.53 29.45 † 7.92	26.00 27.60 † 1.60	27.60 33.60 ↑ 6.00

Table 2: Overall Performance of PostShare based on Llama2-7B model.

	2.0	142.04 C	1.1.1 A 1.1.1	2-3	1. A	1. A	M. 1997		300 2~3	1.75% a	St. 198		14 Sec. 14	
W^q	74.92	29.2	74.97	27.5	73.29	27.8	70.89	27.7	64.64	27.5	58.43	25.5	24.4	25.7
W^k	74.92	28.7	74.27	27.6	71.71	27.7	70.35	27.6	68.77	27.6	64.36	27.2	27.6	26.9
W^v	74.92	28.1	74.48	27.7	73.29	26.7	70.46	28.5	68.39	25.6	60.17	23.1	23.9	22.5
W^q, W^k, W^v	71.71	27.6	63.55	27.8	54.03	26.8	50.16	24.5	51.41	25.5	51.09	25.5	29.0	25.3
$W^q W^k W^v$	74.59	34.7	74.59	30.0	73.45	30.3	70.73	28.2	66.59	27.6	63.33	27.6	27.1	25.0
$W^q W^k$ (Ours)	75.84	33.9	75.30	28.2	74.54	27.5	73.01	27.3	69.37	27.5	65.56	28.0	27.6	28.6
			1		-17						10			

Conclusion

- **Head-wise Weight Sharing!**
- **Training-free, Effective! — DirectShare**
- **Post-training-based, More Stable Performance!**
 - **——** PostShare
- **Contact us:** zouyingcao@sjtu.edu.cn yifeiyang@sjtu.edu.cn zhaohai@cs.sjtu.edu.cn

• Full paper

